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We present a method for fMRI data group analysis that makes the link between two distinct frameworks:
surface-based techniques, which process data in the domain defined by the surface of the cortex, and
structural techniques, which use object-based representations of the data as opposed to voxel-based
ones. This work is a natural surface-based extension of the volume-based structural approach presented
in a previous paper. A multi-scale surface-based representation of individual activation maps is first com-
puted for each subject. Then the inter-subject matching and the activation detection decision are per-
formed jointly by optimization of a Markovian model. Finally, a significance measure is computed in a
non-parametric way for the results, in order to assess their relevance and control the risk of type I error.
The method is applied on simulated and real data and the results are compared to those produced by
standard analyses. The surface-based structural analysis is shown to be particularly robust to inter-sub-
ject spatial variability and to produce relevant results with good specificity and sensitivity. We also dem-
onstrate the advantages of the surface-based approach by comparing with the results of a 3D structural
analysis.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Multi-subject studies in neuroimaging open the way to explor-
ing fundamental questions related to the human brain function.
In particular, group analysis of functional magnetic resonance
imaging (fMRI) data aims at building descriptions of unicity and
diversity across a pool of subjects for a same cognitive experiment.
When the pool is sufficiently large, results can then be generalized
to a population. Still, matching these subjects together strongly suf-
fers from the inter-subject variability that exists at different levels,
anatomical, physiological or functional. To circumvent this issue,
the historical and still usual procedure consists in normalizing
every scanned subject to a common anatomical space (Gholipour
et al., 2007). Hence, any location (i.e. voxel) in that space is sup-
posed to correspond to the same location in the brain of each
subject and multi-subject comparisons can consequently be carried
out on the basis of this spatial matching. As the usual anatomical
normalization does not entirely solve the problem of cross-subject
spatial matching, an additional spatial smoothing is commonly
performed on the functional data in order to increase the overall in-
ter-subject matching between homologous brain structures. Then,
ll rights reserved.

lon).
due to the variability across responses from one subject to another,
a second-level model is defined to make inference on voxels that
showed a group-scale effect (Beckmann et al., 2003). Decisions
are classically taken using Student t-tests, upon the usual hypothe-
sis that the signals across subjects are normally distributed. A spe-
cific threshold is chosen on the statistical values and this results in a
group activation map showing voxels which were activated across
subjects. The literature abounds with activation detection tech-
niques (Roche et al., 2004; Mériaux et al., 2006; Woolrich et al.,
2004; Penny et al., 2005; Flandin and Penny, 2007; Keller et al.,
2009; Smith and Nichols, 2009). Most of those methods encounter
three limitations:

� They are voxel based. However, voxels are only the acquisition
space and do not have any anatomical meaning, other than the
approximate localization provided by spatial normalization. At
this level, variability is difficult to encode, whereas at the object
level it is clearer and variability can be encoded, e.g. in terms of
size or in terms of variance of spatial location. In this context,
normalization tends to neglect the inter-subject variability.
Notably, a single triplet of coordinates in this common space is
likely to point to different – especially cortical – structures from
one subject to another (Uylings et al., 2005; Crivello et al., 2002).
Regions of interest (ROI)-based analyses are generally a way to
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Fig. 1. Schematic comparison between standard and structural analysis – the upper
grids represent ten individual maps, each containing two objects of interest (red
and blue circles) plus noise. On the bottom left corner is a group map obtained by
averaging the individual ones. On the bottom right corner is the optimal group
result of a structural analysis, i.e. ten individual maps showing two group
activations each. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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establish correspondence between subjects that overcomes spa-
tial variability, as long as the ROIs are defined individually. They
can be based on anatomical information but it implies a strong
prior on anatomy and is rarely automatic. They can also be
defined based on functional information (Fedorenko et al.,
2010). This requires to add a short but very robust fMRI experi-
ment, such as a localizer, at the beginning of the functional
experiment, that will be used to preselect functional ROIs at
the individual level. Similarly, Function-based inter-subject reg-
istration aims at addressing this issue (Sabuncu et al., 2010) but
is difficult to generalize to other functional studies and does not
improve registration over the whole cortex.
� The large amounts of information contained in raw 3D volumes

require heavy computation, and have to cope with multiple
testing, even if the statistical cost is generally reduced by taking
into account the image autocorrelation level (i.e. a number of
resolution elements (RESELS)) (Worsley et al., 1996) or by defin-
ing ROIs within which the signal is considered homogeneous.
� The detection results are presented in the common space, as a

3D group activation map, depicting for every voxel the likeli-
hood of being activated across subjects. However, this map pro-
vides results at the group level and does not store any
individual information: anatomo-functional correlation is only
visible in the common space, ignoring inter-subject anatomical
variability. The use of this single map, as well as the choice of a
single threshold, in order to describe results from a whole
cohort of different subjects, are questionable (Coulon et al.,
2000; Thirion et al., 2007).

In comparison to this general iconic approach, the framework of
structural techniques allows one to deal with representations of
data closer to the object under study rather than voxels. Analysis
is hence driven on objects of interest and their relationships, which
were both formerly extracted from the original images, using ana-
tomical (Rivière et al., 2002; Cachia et al., 2003; Roca et al., 2009),
functional (Coulon et al., 2000; Thirion et al., 2007; Lashkari and
Golland, 2009), or anatomo-functional (Thirion et al., 2006) crite-
ria. These objects are built as representations of real neuroscientific
objects, e.g. sulci (Rivière et al., 2002), white matter fibers (Guevara
et al., 2011), gyri (Cachia et al., 2003), functional areas (Coulon
et al., 2000; Thirion et al., 2007; Lashkari and Golland, 2009), func-
tional connectivity patterns (Langs et al., 2011) taking into account
a number of properties, in terms of geometry, topology, and rela-
tionships between each other. For the particular case of functional
analysis, Fig. 1 presents an abstract description of these structural
approaches. Let one consider ten individual activation maps, each
composed of two clusters of interest plus background noise. The
upper cluster (circled in red) varies in shape from one map to an-
other but is quite stable spatially. In comparison, the lower cluster
(circled in blue) has a much more variable position. Any kind of
analysis aims there at finding the most significant, reproducible
objects in the group. A classical voxel-by-voxel analysis would
there produce a group activation map similar to the one illustrated
at the left bottom: the upper cluster can still be spotted but the
lower one has clearly suffered from the spatial inter-subject vari-
ability, while false positives still remain in the background. In con-
trast, the results of an ideal structural analysis would actually
provide one map per subject with individual representations of
the clusters detected at the group level, hence allowing their local-
ization on each subject’s anatomy. This preserves the possibility to
study anatomo-functional correlation while taking into account
the inter-subject variability. The analysis is here focused on objects
rather than voxels, a level at which variability is better addressed.
Potentially this approach is also more sensitive and robust to spa-
tial normalization limitations (Thirion et al., 2007). To date, this ap-
proach has been developed through few particular works (Coulon
et al., 2000; Thirion et al., 2007; Lashkari et al., 2010) which ad-
dress three major problems: first, the choice of a structural repre-
sentation for functional data, using, e.g. scale-space primal
sketches, or watershed parcels; second, the matching method be-
tween objects from one subject to another; finally, the inference
on putative group activations.

Another aspect of functional data analysis is the volume-based
approach that considers the voxels of the whole brain, including
those in the white matter, whereas the main sources of the func-
tional signal are located in the cortical ribbon (Mountcastle,
1997; Lauwers et al., 2008; Rakic, 1995). With respect to this, sur-
face-based analysis schemes especially gain interest as they focus
on the main location of the cerebral activity. At standard observa-
tion scale, the human cortex can be considered as a two-dimen-
sional structure, with a highly convoluted geometry and a high
inter-subject variability. Hence, surface-based studies differ from
volume-based ones by relying for instance on geodesic distances,
computed on this particular manifold, rather than Euclidean dis-
tances. This approach is particularly advocated in the scope of cor-
tex-based studies, since the generally employed surface models do
not include deep subcortical structures or cerebellum. Considering
surfaces instead of volumes also helps to address the question of
inter-subject matching in a way more suited to the study of the hu-
man cortex, by taking into account its geometry, and it has been
shown that considering the cortex as the reference for inter-sub-
ject studies is of great interest (Fischl et al., 1999a; Van Essen
et al., 1998; Clouchoux et al., 2010). Surface-based functional anal-
ysis has however not been much studied in the literature. Most of
existing works either perform standard voxel-based univariate
(Goebel and Singer, 1999) or multivariate (Formisano et al.,
2004) analyses restricted in the cortical ribbon or a parcellation
of it (Flandin et al., 2002). Some methods define a general linear
model (GLM) using matrices containing surface nodes values in-
stead of voxels intensities (Andrade et al., 2001; Saad et al.,
2004), or embedding anatomical information using constrained
spatial basis functions (Kiebel and Friston, 2002). Some others
realize Bayesian inference of brain activations along the cortical
mesh (Vincent et al., 2010). Still, very few of these methods tackle
surface-based group studies (Hagler et al., 2006). Regarding this
matter, a number of inter-subject surface-based matching
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techniques allow to warp a spherical coordinate system onto
individual cortical surfaces (Fischl et al., 1999a; Fischl et al.,
2004; Lyttelton et al., 2006; Joshi et al., 2010) so as to establish
correspondences across the surfaces without any actual 3D
deformation and hence opening the way to surface-based group
analyses.

In this paper, we propose a fusion of the two frameworks, struc-
tural and surface-based, in order to develop a method for group
analyses gathering advantages from both sides. The method uses
individual surface-based functional maps built from fMRI data. It
proposes a multi-scale object-based representation of these maps
and performs a surface-based group analysis from these represen-
tations. A schematic overview of the process is shown in Fig. 2. The
inter-subject matching and the activation detection are performed
in a single step by optimization of a Markovian model. Finally, an
inference is made on the results by estimating their significance
and controlling the risk of type I error.

The contributions of the paper are manifold:

� It proposes a surface-based extension of the volume-based
structural method presented in (Coulon et al., 2000). The struc-
tural representation of previously computed surface-based indi-
vidual statistical maps, together with the preprocessing steps
and the graph representation of the group of subjects, are pre-
sented in Section 2. This section is mostly a reminder of meth-
ods previously presented in (Coulon et al., 2000).
� It improves our previous structural method with proper data-

driven parameters estimated from real data (Section 3.2), the
definition of an inter-subject spatial similarity between objects
(Section 3.4), and a regionalized optimization scheme (Section
3.5).
� It adds a non-parametric control of the risk of type I error (Sec-

tion 3.6).

In Section 4, the method is applied to synthetic and real data.
Finally, the last section presents and discusses the results, as well
as a comparison with the results of a volume-based structural anal-
ysis and a random effect (RFX) analysis. In the conclusion we high-
light the possible developments of such structural methods on the
cortical surface domain.
Fig. 2. Overview on the different steps
2. Structural representation of surface-based fMRI data and
graph-based group representation

We present here the data preprocessing and recall the structural
representation of our data, already presented in (Coulon et al.,
2000) in a volume-based context. We also recall the graph-based
representation of the multi-subject data from which group analysis
is performed. For more details about structural representations of
statistical maps, the reader can refer to (Coulon et al., 2000).

2.1. Preprocessing steps

Once data is acquired, raw T1 volumes are processed using the
anatomical pipeline from the BrainVisa package (http://brainvi-
sa.info (Mangin et al., 2004)). This includes, for every subject, image
intensity bias correction, brain hemisphere separation and tissue
segmentation, and extraction of gray/white matter interface as
spherical meshes (Mangin et al., 2004). Usual preprocessing steps
are applied to functional volumes, including slice-timing, spatial
realignment, registration with the anatomy, such as performed by
the SPM package (Friston et al., 1994). Then, the following step con-
sists in converting the 3D functional volumes into 2D cortex-based
representations. The method proposed in (Operto et al., 2008) al-
lows the creation of such representations, by projecting the func-
tional data onto the corresponding anatomical mesh, taking
consideration of the local cortical geometry. The result is a matrix
depicting the signal time course associated with every mesh node.
From every of these surface-based functional maps, we compute a
surface-based statistical t-map by defining a GLM over the surface
nodes (in particular, we employed the method described in (Roche
et al., 2004), provided with the BrainVisa fMRI toolbox (Favre et al.,
2009)). This results in individual surface-based activation maps, for
every subject of the group, for a single particular contrast of inter-
est. An example of such a maps is shown in Fig. 3.

2.2. Surface-based structural representation: the scale-space primal
sketch

Since the works of Poline and Mazoyer (Poline and Mazoyer,
1994) and Worsley (Worsley et al., 1996), it is established that a
of the structural analysis pipeline.

http://brainvisa.info
http://brainvisa.info


Fig. 3. Scale-space computed from a surface-based statistical student t map.

Fig. 4. Symbolic representation of the primal sketch.
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multi-scale approach is beneficial to functional image analysis. In
(Coulon et al., 2000) we introduced the use of such representation,
the scale-space primal sketch, in the context of group analysis of
functional data.

The scale-space primal sketch is a hierarchical object-based
representation of data derived from a linear scale-space computed
from the original data (Koenderink, 1984; Lindeberg et al., 1999).
In our case, a linear scale-space is computed from each individual
by solving the heat equation on the surface (Koenderink, 1984):

@Lðn;rÞ
@r

¼ DLðn;rÞ; ð1Þ

with the individual map as initial condition. The Laplacian operator
can be estimated on a triangular mesh using various methods (López
Pérez, 2006; Zosso and Thiran, 2009; Chung and Taylor, 2004; Chung
et al., 2008; Chung et al., 2005). Here, we use the finite elements
method described in (Chung and Taylor, 2004), which was efficiently
used in related works, e.g. (Cachia et al., 2003), and leads to a
Laplacian operator computed as a weighted sum of values at neigh-
boring nodes. The linear scale-space results in a series of surface-
based maps derived from the original map and showing progressive
smoothing of fine details, as the scale parameter increases, in favor of
the most robust features, as illustrated in Fig. 3.

From this linear scale-space, the scale-space primal-sketch of
the individual map can be computed. The primal sketch is an ob-
ject-based representation that describes the structure of the map.
It has been shown to provide good representation of functional sta-
tistical maps (Coulon et al., 2000; Lindeberg et al., 1999). The pri-
mal sketch of an individual map is a graph-like hierarchical
structure composed of multi-scale objects, scale-space blobs
(SSB), linked by relationships called bifurcations, that described
their relative behavior through increasing scales. Every local max-
imum in the original map is associated to a SSB. Each SSB embeds
two descriptive features: a measure of their activation level and
their spatial support on the cortical surface mesh. The activation
level T associated to a scale-space blob ssb is defined as:

TðssbÞ ¼
X

ra6ri<rd

T ðriþ1Þ þ T ðriÞ
2

ðlnriþ1 � lnriÞ ð2Þ

with [ra,rd] the lifetime interval of the SSB, and T a function de-
fined as:

T ðriÞ ¼max
n2Sri

tðn;riÞ ð3Þ

with t(n,ri) as the Student t-test value at node n on the blob’s sup-
port Sri

. The integration of this measure across scales generally fa-
vors the objects showing good activation on the original t-map and
with sufficient long lifetime across scales (Lindeberg, 1993) (see
Fig. 4), as illustrated in Fig. 5. For more in-depth details about the
primal sketch, the reader should refer to the work of Lindeberg
(Lindeberg, 1993; Lindeberg, 1994), and for a specific use in the con-
text of neuroimaging data to (Coulon et al., 2000)
2.3. global comparison graph

In order to represent the group of subjects, the set of primal
sketches is embedded in a graph G as defined in (Coulon et al.,
2000): nodes are the SSB of primal sketches of all the subjects indi-
vidual maps, and an edge is created between two nodes if they be-
long to two different subjects and show some inter-subject
similarity (this similarity is detailed further in Section 3.4). We
stress that this notion of edge is in no way a process of decision:
it does not imply that the inter-subject spatial proximity corre-
sponds to the repetition of a functional activation across two sub-
jects. Instead it shows that two blobs are simply spatially close
enough in the common group space. Decision is taken in a further
step. Nodes in the graph are valued with the T value of the corre-
sponding SSB, and edges are valued with the similarity measure
between two objects defined (Section 3.4). The topology of the
graph and the values associated to nodes and edges are the key
information provided to the group-level detection.
3. Surface-based group analysis

In this section, we define our model and show how labels are
assigned to nodes in G. The group analysis process entails assign-
ing a label to every node: a non-null label if considered as an acti-
vation, or null label if of non-interest. Nodes (SSB) carrying the
same non-null label are representing the same group activation
across different subjects. The label field on the graph is repre-
sented by X, the data represented by Y, and maximizing the pos-
terior probability P(XjY) leads to the optimal labeling that finds
objects with high activation measures in individual maps and a



Fig. 5. Blobs presenting the highest T(.) measures for five different t-maps of five different subjects. (Top) original statistical maps – (bottom) blobs showing the highest
measures (in red) are superimposed on the thresholded statistical maps (t > 3.9). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. Datadriven potential function.

980 G. Operto et al. / Medical Image Analysis 16 (2012) 976–990
good spatial stability across subjects. In (Coulon et al., 2000), we
showed that by modeling X with a Markov random field it is pos-
sible to maximize the posterior probability by minimizing the en-
ergy U(XjY):

UðXjYÞ ¼
XN

s¼1

VdðysjxsÞ þ
X

c2C

VcðXÞ; ð4Þ

with Vc(X) the potential functions associated to cliques in G and
Vd(ysjxs) the data-driven potential functions associated to sites in G.

Any configuration of labels gets therefore associated to an en-
ergy, whose different terms correspond to specific potential func-
tions, which can be either data-driven or contextual. In practice,
finding the optimal realization of the label field amounts to point-
ing out a trade-off between these terms, which minimizes the glo-
bal energy. We present below the different functions that define
our model.

3.1. Potential functions and energy minimization

The potential functions actually define the configurations to be
encouraged (associated to negative potentials) or to be penalized
(associated to positive potentials).

1. Data-driven potential: the data-driven potential V(ysjxs) is
estimated for every node s of the graph. We recall that ys

is the data associated to node s, i.e. T(s) (see Eq. (2)). Accord-
ing to our model, this potential has different expressions,
depending on whether the label carried by s is null or
non-null.
Blobs of non-interest have no prior on their measurements,
therefore we define Vd(ysjxs = 0) = 0.
In either case, blobs have more chances to represent an acti-
vation as their associated activation measure is high.
Hence we define two values y1 and y2, and:
If ys < y1; Vdðysjxs – 0Þ ¼ Kd

If ys P y1; Vdðysjxs – 0Þ ¼ Kd :
y2
2ð Þ

2

y2
2ð Þ

2
þðys�y1Þ2

ð5Þ

with Kd = Nps�kd, kd being the weight given to this data-driven
potential in the global energy U(XjY) and Nps the number of
subjects (i.e. primal sketches) in the analysis (Fig. 6).
Note that the data-driven potential is positive everywhere,
which implies that, whatever its measure, a blob requires
that other potentials (in particular, the spatial similarity po-
tential) be negative in order to be considered as a putative
activation.
Fig. 7. Similarity potential function.
2. Spatial similarity potential: this potential is related to sec-
ond-order cliques, i.e. every pair of blobs which are linked in
the graph, and encourages these pairs in getting the same
non-null label provided they present a good spatial similar-
ity. Hence we define:
If xs1 – 0; xs2 – 0 and xs1 ¼ xs2 ; Vsim ¼ �Ksim � simðs1; s2Þ
Otherwise; Vsim ¼ 0

ð6Þ

with xs1 and xs2 being the labels carried by nodes s1 and s2

and Ksim the weight of this potential in the global energy
(Fig. 7). sim is the function measuring this similarity be-
tween s1 and s2: the estimation of the inter-subject similar-
ity on cortical meshes is done using a surface-based
coordinate system and will be defined further in Section 3.4.
3. Lower-scale potential: the lower-scale potential is esti-
mated for every blob in the graph, i.e. for first-order cliques.
This function aims at compensating the trend of high scaled
objects to overlap by chance on the cortical surface, com-
pared to those at finer scales (Worsley et al., 1996). There-
fore, when the system finds ambiguous cases, where two
blobs are in competition to represent the same activation
in one same subject, this potential will favor the one at
lower scale.
Blobs carrying null label can be found at any scale level, so
that we define Ve(xs = 0) = 0. Otherwise
Veðxs – 0Þ ¼ Ke:
rs

rmax
ð7Þ

where Ke = ke�Nps, with ke being the weight associated to this
potential in the global energy and Nps the number of primal
sketches in the analysis (Fig. 8). rs is called representation
scale and equals the logarithmic mean scale between the
scales at which the blob s appears and disappears, and the
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potential is normalized with respect to rmax, the maximum
scale in the PSs.
4. Intra primal sketch potential: according to our model, the
same non-null label should not be associated with more
than one SSB per subject, because one same activation can
logically not be identified several times on a single cortex.
This intra-primal sketch potential hence controls the num-
ber of each non-null label in the graph and penalizes any
label which appears multiple times in a same primal sketch.
The graph topology then gets more complex since this
potential concerns all the SSB of a same primal sketch,
which all become neighbors in a single maximal clique.
Hence, if every non-null label appears at most once in every
primal sketch, we define Vps = 0. Otherwise
Vps ¼ Kps:
X

l–0

nl ð8Þ

where nl is the number of occurrences of label l in the primal
sketch and Kps = kps�Nps with kps the weight associated to that
potential in the global energy and Nps the number of primal
sketches in the analysis.
Among all the previously defined potentials, only the spatial
similarity one is negative. This underlines the importance of
group-level information in the detection process, and suggests
that, in this model, activations are first of all objects that can be
found at a similar location in different subjects.

3.2. Parameters of the model

Taking into account the nature of the data (functional blobs)
and their domain of representation (cortical surface meshes) is
essential. Vd, and in particular parameters y1 and y2, depend on
T(.) (Eq. (5)). Using the cumulated distribution of T(.), (computed
from 50 individual t-maps, 10 subjects and five contrast maps
per subject, shown in Fig. 9), we define y1 as the limit correspond-
ing to the top one percent blobs. A blob with lower measure than
y1 is supposed to have a low chance to make part of a group acti-
Fig. 8. Lower-scale potential function.
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ig. 9. Cumulated distribution of the T(.) measure associated to SSBs (computed
vation. Besides, the y2 parameter, which is linked to the data-dri-
ven potential decay, is defined such as the 0.5% best ranked blobs
get a potential value below 1 � 10�3. We noted that among the
top one percent blobs we could generally find all the blobs repre-
senting visually identifiable activated areas in these 50 individual
maps (Fig. 5).

On the other hand, parameters such as potential weights are
chosen empirically so as to observe system stability and robustness
to small variations:

� Ksim = 1.0. All other parameters are tuned relatively to this one.
� Kd = 0.8. Increasing this parameter would favor the data-driven

term and therefore the T(.) value of individual SSB. This means
that SSBs with high activation value but not reproducible across
subjects would be more likely to be labeled as activations. Kd

and Ksim are the two main parameters that balance the compe-
tition between individual activation level and inter-subject
reproducibility.
� Kps = 4.0. This parameter has little influence on the results pro-

vided it is high enough to prevent any label from appearing
multiple times within the same subject.
� Ke = 0.2. This parameter has a low value in order to only gener-

ate an unbalance in favor of lower scale SSBs in the energy
when there is an ambiguity between two SSBs of the same sub-
ject that might represent the same activation (as described in
Section 3.1).

3.3. Energy minimization

The global energy U(XjY) has resultingly the following
expression:

UðXjYÞ ¼
X

s2G
VdðysjxsÞ þ

X

s2G
VeðxsÞ þ

X

c2Csim

VsimðcÞ þ
X

p�G
VpsðpÞ ð9Þ

composed of the different potentials, previously described, over the
sites in the graph G. This energy is clearly non-convex and therefore
its minimization is not trivial. To perform it, we use a Gibbs sampler
with simulated annealing (Geman and Geman, 1984), coupled with
a region-based specialization of the labels over the cortical surface –
detailed in Section 3.5 – which facilitates optimization. After con-
vergence, the resulting label field is showed to be optimally satisfy-
ing the detection model defined in Section 3. It includes a set of
positive labels, each one representing a group activation. We there-
fore know the occurrence, or the absence of occurrence, of each
activation for any subject. Individual representations can then be
mapped on each subject’s anatomy for localization considerations
(see illustration on Fig. 2).
1% 0.5%

from 50 individual t-maps, 10 subjects and five contrast maps per subject).
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3.4. Surface-based inter-subject similarity

The inter-subject matching is performed directly on the cortical
surface using an anatomically-constrained surface-based referen-
tial defined over the gray/white matter interface of every subject
(Clouchoux et al., 2010) that provides an implicit inter-subject
matching. As opposed to the classical approach, the method is
hence exempt from any iconic normalization step, and can use
any other 2D groupwise spherical coordinate-system over the cor-
tex (e.g. (Van Essen, 2005; Fischl et al., 1999b)), although it is
dependent on the quality of this system.

Every SSB is represented by a patch on the cortical mesh. A 2D
coordinate bounding box is computed for this patch. It is then pos-
sible to compute a spatial overlap between bounding boxes from
two SSB from distinct subjects. In Eq. (6), we defined the similarity
potential as depending on a function sim(.,.) for assessing the spa-
tial proximity of two SSB from two different subjects. This similar-
ity function between two blobs s1 and s2 is defined as the overlap
ratio between their bounding boxes b1 and b2:

simðs1; s2Þ ¼ 2�A\ðb1; b2Þ
A[ðb1; b2Þ

ð10Þ

This similarity between s1 and s2 is therefore based on the ratio
between the areas of the intersection A\ðb1; b2Þ and the union
A[ðb1; b2Þ of their bounding boxes b1 and b2.

The estimation of this overlap is adimensional, and independent
from any metric. As a result, while creating the global comparison
graph (see Section 2), an edge is built between two nodes/SSBs
only if their spatial overlap is non-null, as well as their scale
overlap.

3.5. Region-based label specialization

Gibbs sampling with simulated annealing converges (in an infi-
nite time) to the global minimum, under theoretical conditions
which are difficult to comply to in practice (Geman and Geman,
1984). Moreover, the intra-primal sketch potential (Eq. (8)), which
controls the numbers of occurrences of non-null labels over each
primal-sketch embedded in the global graph, complexifies the
topology of G by introducing high-order cliques and makes the
optimization process troublesome. Nevertheless, once a non-null
label appears in the graph it is bound to be spatially limited to
an area around the specific location it has appeared at, and assign-
ing that same label to any other SSB elsewhere on the cortex
becomes irrelevant. We therefore decide to specialize every
Fig. 10. Region-based specialization of the labels: (left) all the labels are in competitio
overlapping regions.
non-null label to a particular area on the cortex. Each label is asso-
ciated to a region it can only appear in, and focuses on detecting
activations in that region only. Labels and their associated local
fields of search hence form a cover of the whole cortical surface.
Size of the regions is chosen high enough to overcome the spatial
variability of activations across subjects (Fig. 10). For that same
purpose, the regions should overlap with their neighbors. Addi-
tionally, several different labels are, in practice, associated with
every single field of search: in the case of multiple activations lo-
cated in the same region, several labels would be available in order
to identify them distinctly.

This region-based approach leads to rigorously identical results,
in terms of detected activations, compared to the original global
approach. In contrast, calculation costs are drastically reduced:
with a total of 108 different labels, the number of possible states
for each site of the graph then varies between 3 and 12 labels,
depending on the site localization. Moreover, in a future work, this
approach could allow us to introduce extra anatomical information
in the process: for instance, by defining regions according to a gyral
parcellation (Clouchoux et al., 2006; Cachia et al., 2003; Fischl
et al., 2004), the detection results become associated with specific
cortical regions and could therefore get anatomically identified.
3.6. Assessing structural results significance

The structural analysis generates a number of labels on the
graph, resulting from the prior energy minimization step. Each of
these labels corresponds to a group activation detected in a certain
number of subjects (equal to the number of primal sketches in
which a SSB carries this label).

Standard analyses classically provide an estimation of the rele-
vance of their results. Decisions on voxels are taken under the
hypothesis of normality of the data distribution (or for certain
methods, only symmetry (Roche et al., 2004; Mériaux et al.,
2006)). For these methods relying on a parametric model of the
data distribution, results are generally provided with a single
threshold on a significance level, which controls the risk of type-I
error (false positive). In practice, results with low p-values can be
interpreted as statistically significant and are less likely to wrongly
reject the null hypothesis.

As opposed to this, the decision process of the structural sur-
face-based analysis maximizes a posterior probability and offers
results under the form of connected sets of SSBs in Gwith the same
non-null label. Some labels can appear in every subject of the
group, as those representing stable primary activations, while
n over the cortical surface domain – (right) the domain is divided into partially-



Fig. 12. Flowchart of the sampling algorithm used in the estimation process of
results significance.
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others may appear only in subgroups. This representation of re-
sults aims at being more extensive, compared to the simple vox-
el-based approach. Still, completing this representation by
assessing the significance of these labels is an essential point in or-
der to infer post hoc which of the matched blobs are reliable in
terms of false positive control.

Results of such nature satisfy no trivial distribution model such
as normality. What confidence level could then be associated to
one label appearing in each subject of the group and another in a
subgroup of subjects? This question underlines here the particular
nature of structural results. We present here a non-parametric ap-
proach in order to evaluate the risk of accepting a false positive
among these results and to associate a significance index to every
detected group activation. An overview of the method is illustrated
in Fig. 11.

3.6.1. Surface-based structural results: general nature
Surface-based structural analysis generates a set of labeled

blobs. More exactly, every non-null label is associated to one con-
nected subgraph (CS) in the global comparison graph. Each of these
CSs can be characterized by an average t-value, as well as an aver-
age measure of inter-subject spatial overlap. Both of these are stan-
dard criteria to assess functional activations significance (Poline
et al., 1997). Still, the size of these CSs can vary as it equals the
number of subjects in which the activation was identified.

The estimation of the relevance of these resulting labels and
their associated CSs first entails assessing the distribution of the
population to which these CSs belong.

3.6.2. Population sampling
Let l be a non-null label attributed to nl SSBs and forming the CS

Gl � G. The subgraph Gl is associated with energy El, has a measure
of average t-value tl and an average inter-subject spatial overlap sl.
Gl was detected on basis of its relevant profile (low energy due to
high activation and inter-subject spatial stability) in comparison
to the numerous other CSs of same size nl existing in the global
graph. Consequently, with regard to Gl, estimating the distribution
of average t-value and spatial overlap over the population of nl-or-
der CSs is a way to assess its atypical nature. This recalls the typical
null-hypothesis tests performed in functional imaging: if we as-
sume that there is no group activation in our graph, what is the
probability of observing a value at least as high as the one of our
object?

The distribution of nl-order CSs in the graph is sampled as fol-
lows: first, a random blob is drawn, then a second one is chosen
Fig. 11. Assessing structural results significance by ra
among its neighbors in the graph. Until size nl is reached,
additionnal blobs are randomly drawn from the set containing the
neighbors of every previously added blob. In case the first blob is
chosen in too small a connected component, it is drawn randomly
again. For each sample, average t-value and average spatial overlap
are computed. The whole process iterates until N samples are drawn
(in practice, N = 10,000). Note that samples are drawn with replace-
ment. This sampling algorithm is illustrated by Fig. 12.
3.6.3. Assessing results significance by rank analysis
Once the population of nl-order CSs is sampled, the distribu-

tions of tl and sl can be estimated, as illustrated in Fig. 11 or shown
for real data in Fig. 17. tl and sl are relevant information since they
are classical criteria for group detection significance assessment
(Poline et al., 1997) and independent of our detection model, un-
like the energy. We want to find out if the sampling process is able
to draw random components as atypical as those returned by the
former analysis step. Since no assumption is made about the distri-
butions, we use a non-parametric rank analysis approach to com-
pare the putative activated blobs sets to the population they
nk-percentile analysis: overview on the method.
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belong to. Therefore, from the distributions of tl or sl we compute
the rank-percentiles %tl and %sl of the CS Gl. This informs about
the (hopefully small) proportion of similar samples obtained ran-
domly and therefore about the significance of the putative activa-
tion represented by label l.

To summarize, for each group activation l with nl SSBs, the dis-
tributions of tl and sl are computed by sampling the population of
nl-order CSs, and two rank-percentiles %tl and %sl are computed, as
illustrated in Fig. 11. We observed that the arithmetic mean % �ml

between these two rank-percentiles is a relevant indicator of the
significance (see result section), which describes the average risk
of type-I error associated to each generated CS.

4. Experiments

fMRI data analysis systematically faces the question of results
validation. The lack of a reliable ‘‘ground truth’’ to which the re-
sults of existing methods could be compared, is an obstacle. This
lack is partly due to the existing inter-subject variability, which
is still an open problem. Regarding this, in the following we pres-
ent here experiments on both simulated and real data in order to
illustrate the behavior of the surface-based structural analysis
and to assess its performance.

4.1. Experiments on simulated data

4.1.1. Creation of surface-based simulated activation maps
We built synthetic statistical maps on spherical meshes. The use

of a common domain such as a sphere allows to proceed to inter-
subject comparisons while simulating anatomical variability but
without taking into account any bias or error that a normalization
step might introduce. For all individual synthetic maps we use the
same spherical mesh (22184 nodes). Five nodes were chosen (same
nodes for all subjects) as the location of five different activation foci.
For each of those nodes, inter-subject variability was then added by
selecting a random node around the initial position at a distance
d � d, with d the parameter that controls the spatial variability.
Around this new position, all nodes in a 7 mm radius neighborhood
were given an activation value of tA = 6.0. Finally, the resulting clus-
ters were smoothed with a Gaussian smoothing (FWHM � 20 mm).

Noise was added to those individual activation maps, under the
form of noise maps built by using at each node the realization of a
normal random variable of standard deviation ra and followed by a
Gaussian smoothing (FWHM � 20 mm). Using ra = 1.27 (FWHM �
3.0) one gets simulated activation maps that reproduce the inten-
sity distribution of real ones, as illustrated on Fig. 13. A value of
ra = 0.05 will also be used to simulate low noise activation maps,
in order to focus on the effects of inter-subject spatial variability
(controlled by the parameter d).

4.1.2. Experiments
Experiments were run to study the performance of the method

with respect to variations of the background noise level and inter-
Fig. 13. Comparison between real and simulated maps: (left) real statistical t-map pre
(ra = 1.27) – (right) same map with low background noise (ra = 0.05).
subject spatial variability of activation foci. Four datasets were
generated, each composed of 20 simulated maps (simulating 20
subjects) and characterized by particular noise level and spatial
variability, namely:

� dataset 1: low background noise (ra = 0.05) and no spatial var-
iability (d = 0 mm),
� dataset 2: standard background noise level (ra = 1.27) and no

spatial variability (d = 0 mm),
� dataset 3: low background noise (ra = 0.05) and high spatial

variability (d = 19 mm),
� dataset 4: standard background noise level (ra = 1.27) and high

spatial variability (d = 19 mm).

The analysis process is then performed on these maps: creation
of the primal sketches, structural group analysis, and significance
assessment on the resulting labels. Performance of structural anal-
ysis is then measured according to its ability to correctly detect
and match all five activation foci across these maps. Separately,
for each dataset, a Random Effect (RFX) map is computed (Penny
and Holmes, 2004). These RFX maps are then thresholded at a stan-
dard level (t > 3.9,p < 5 � 10�2) in order to compare the remaining
clusters to the structural analysis results. Thresholded RFX maps
are shown in (Fig. 14) for various levels of inter-subject anatomical
variability, showing a deterioration of results as inter-subject spa-
tial variability increases.

4.2. Experiments on real data

The analysis pipeline was applied to real data, from the NMR
database (Poupon et al., 2006), composed of 12 subjects, including
T1 anatomical volumes and functional series acquired with a Local-
izer protocol (Pinel et al., 2007). For each subject, a gray/white mat-
ter interface mesh was extracted from its T1 volume (Mangin et al.,
2004), and functional volumes, corrected by slice timing, were reg-
istered with anatomy and projected onto the subject’s cortical
mesh using (Operto et al., 2008). Every subject has a surface-based
coordinate system on their cortical mesh, obtained using (Clouc-
houx et al., 2010). Finally, from the surface-based functional time
series, we create contrast maps (Roche et al., 2004) and individual
statistical t maps. From this preprocessed data, we chose to retain a
subset of 10 subjects, for which these prior steps (i.e. mesh extrac-
tion, parameterization) were conducted satisfactorily.

Left-hemisphere surface-based individual t maps were pro-
cessed following the structural method presented in this paper:
creation of individual primal sketches/definition of the global com-
parison graph/ labeling process via energy minimization/signifi-
cance estimation. Finally, the labeling process results in a set of
different labels, whose significance can then be estimated.

Analyses were performed on two different contrasts, in order to
assess performance on a variety of localizations and activation lev-
els, namely: (Right–Left Hand) and (Audio–Video). Both are standard
functional contrasts and data have been previously analyzed using
sented on spherical mesh – (center) simulated map presented on the same mesh



Fig. 14. Thresholded RFX maps (t > 3.9, p < 5 � 10�2) obtained for four series of simulated maps with various levels of inter-subject spatial variability and low noise
(ra = 0.05): (from left to right) d = 0 mm, d = 5 mm, d = 10 mm, d = 19 mm.

Table 1
Results on simulated data with activation label l, mean t-value tl, mean inter-subject
spatial overlap and sl, corresponding rank-percentiles %tl and %sl, mean rank-
percentile % �ml and number of individual occurrences nl.

l nl tl sl %tl %sl % �ml

No background noise + no spatial variability
1 20 6.73 0.8 99.99 99.99 99.99
2 20 6.67 0.93 99.98 99.99 99.99
3 20 6.81 0.91 99.99 99.99 99.99
4 20 6.61 0.84 99.96 99.99 99.98
5 20 6.32 0.82 99.04 99.99 99.52

Standard background noise + no spatial variability
1 20 6.9 0.78 99.99 99.99 99.99
2 20 7.27 0.90 99.99 99.99 99.99
3 20 7.14 0.83 99.99 99.99 99.99
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a standard univariate RFX test (Pinel et al., 2007) that we use as a
reference to evaluate our results.

Finally, volume-based structural analysis was also performed
on the functional data in order to assess the benefit of the sur-
face-based approach. Functional volumes were normalized to the
ICBM152 space using the SPM software (Ashburner and Friston,
1999), then individual t-maps were built using the same model
than for surface-based data. From each t-map a 3D primal sketch
was built (algorithm described in (Coulon et al., 2000)). A group
analysis of 3D primal-sketches was then performed using the same
potential functions and same weights than for the surface-based
model. Inter-subject SSB similarities were computed in the nor-
malized space using Eq. (10) with 3D bounding boxes in the nor-
malized space.
4 20 7.66 0.68 99.99 99.99 99.99
5 20 6.92 0.7 99.99 99.99 99.99

No background noise + spatial variability (d = 19 mm)
1 20 6.86 0.42 99.99 99.99 99.99
2 12 6.89 0.53 99.99 99.99 99.99
3 19 6.48 0.34 99.99 99.99 99.99
4 20 6.47 0.47 99.98 99.99 99.99
5 20 6.60 0.43 99.99 99.99 99.99
6 7 6.72 0.87 99.70 99.99 99.85

Standard background noise level + spatial variability (d = 19 mm)
1 20 7.05 0.35 99.99 99.99 99.99
2 18 7.41 0.38 99.99 99.98 99.99
3 20 6.90 0.34 99.99 99.99 99.99
4 20 7.21 0.36 99.99 99.95 99.99
5 19 6.96 0.27 99.99 99.89 99.94
6 3 7.26 0.66 99.81 99.12 99.46
5. Results and discussion

5.1. Simulated data

Results are summarized in Table 1. The positive labels gener-
ated by the method depict activations that were detected.

Overall, the generated labels matched the simulated activations:

� datasets 1 and 2 generated 5 positive labels each appearing
once per map with no false positives (FP) and no false negatives
(FN). Every label’s significance was over 99.5%,
� dataset 3 generated 6 positive labels. Three of them correctly

appeared 20 times (once per map). One appeared 19 out of 20
expected. Two labels appeared respectively 7 and 12 times: this
difference illustrates the disturbance effect related to variabil-
ity. While actually matching the same single activation, two dis-
tinct labels (2 and 6) were created on the basis of their spatial
distribution. This series hence counts 2 FN at the subject level,
but none at the group level,
� dataset 4 generated 6 positive labels, instead of five expected.

Three of them appeared correctly 20 times, i.e. once per map.
One of them appeared 19 out of 20 expected. Two labels were
generated respectively 18 and 3 times. As for series 3, two labels
(2 and 6) were detected and represent a single activation.
Among these 21 occurrences, 20 match a true simulated focus
and one FP appeared on one individual map (therefore at the
subject level but none at the group level). The six labels have
percentiles % �ml ranged between 99.46% and 99.99%.

Activations are generally well localized, despite the introduc-
tion of background noise or spatial variability. Among the four
analyses, we counted a total of 2 FN and 1 FP, when a label
wrongly did/did not appear on an individual map. Nevertheless,
considering the group level, the five simulated activation foci were
systematically assigned a positive label and there was no FP; addi-
tionally, every positive label was associated to a significance index
% �m higher than 99.0%. This shows excellent sensitivity and
specificity.
False positive at the individual level are correlated with the
introduction of a strong spatial cross-map variability between foci:
this creates configurations, where some blobs get spatially sepa-
rated from the others representing the same activation on the
other maps. The system therefore creates no edge between these
isolated blobs and the others. The formation of subgroups (several
labels to describe a single activation) happens in comparable cir-
cumstances, the optimization process seeking for blobs groups
with the best trade-off between activation values and spatial
stability.

In order to measure the effect of introducing spatial variability
on the system, these results can be discussed against those pro-
duced by standard RFX analysis on the same data (Fig. 14). On
map 1 (d = 0 mm), the thresholded RFX map presents five regions,
corresponding to the five simulated activations. On map 2
(d = 5 mm), these regions are still visible but smaller. On map 3
(d = 10 mm), only small clusters survive above the threshold. Final-
ly, on map 4 (d = 19 mm), the regions corresponding to true activa-
tions can hardly be distinguished from false positives. Fig. 15
illustrates this fact, showing four of the 20 activation maps with
low noise (ra = 0.05) and high spatial variability (d = 19 mm). One
can see that all activations are detected on all subjects with
structural analysis, whereas the RFX map shows poor results. This



Table 2
Labels returned by the analysis and their associated significance indices.

l nl tl sl %tl %sl % �ml El

Right motor–left motor contrast:
1 10 5.44 0.49 99.91 99.98 99.95 �17.77
2 10 5.11 0.51 99.41 99.99 99.7 �17.44
3 2 4.04 0.7 86.26 97.71 91.99 �0.1

l Localization

1 Postcentral (Hand)
2 Precentral (Hand)
3 Frontal

l nl tl sl %tl %sl % �ml El

Audio–video:
1 10 7.67 0.54 97.28 97.77 97.53 �5.47
2 10 7.56 0.44 98.70 94.67 96.69 �4.32

l Localization

1 Heschl
2 Superior temporal
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strikingly recalls the schematic qualitative difference shown in
Fig. 1. All these observations depict the RFX test’s poor perfor-
mances when facing high variability. In comparison, structural
analysis shows ability to robustly match spatially variable acti-
vated regions.

5.2. Real data

For the (Right–Left Hand) contrast, the analysis generated three
positive labels. Labels 1 and 2 appeared 10 times, once per subject.
Label 3 appeared in two subjects. Labels 1 and 2 are located in pri-
mary sensorimotor area (M1 and S1) with significance indices
% �m1 ¼ 99:95% and % �m2 ¼ 99:7%. Label 3 is located in the frontal
lobe and is poorly represented across the group. It has a signifi-
cance index % �m3 ¼ 91:99% and therefore should be rejected. Re-
sults are presented in Table 2 and in Fig. 16. Fig. 17 illustrates
the significance assessment step for these three activations, show-
ing the estimated distributions of tl and sl for 10-order and 2-order
connected subgraphs.

For the (Audio–Video) contrast, the analysis returned two posi-
tive labels, both in the temporal superior area, with significance
97.53% and 96.69%, as presented in Table 2 and Fig. 18.

Figs. 16 and 18 also show that the detected activations are very
consistent with the activity observed on individual surface-based
maps. For both contrasts, results confirm those produced by a stan-
dard RFX analysis (Pinel et al., 2007) on the left hemisphere. Nev-
ertheless the nature of the results carries additional information
that a group map cannot provide. In particular, the fact that group
results are provided with their individual occurrences allows the
link between anatomy and function to be studied more precisely.
For instance, it is interesting to notice on Fig. 16 that the M1 acti-
vation has been almost always detected at the level of the hand
’knob’ (Yousri et al., 1997), while the S1 activation has been sys-
tematically detected at a lower position along the central sulcus,
although the location of this hand ’knob’ varies in the surface-
based referential. If measuring the latitude coordinate in the sur-
face-based coordinate system, which locally indicates the position
along the central sulcus (Clouchoux et al., 2010), the difference be-
tween S1 and M1 is significantly positive (p = 0.00027). This level
of description cannot be achieved by a group map that provides
an average activation localized in an atlas (in fact, in (Pinel et al.,
2007) a single sensorimotor activation is detected, as often with
volume-based methods, with a maximum in the post-central gyrus
which could be interpreted as a purely sensorial activation but is a
result of the inter-subject averaging).

By looking at Figs. 16 and 18, one can see that the usual p < 0.05
threshold applied at the individual level would not provide very
good results. It is particularly true for the (Audio–Video) contrast
for which the superior temporal gyrus’ activation does not show
Fig. 15. (Left top) four of the 20 simulated maps with low noise (da = 0.05) and high s
Corresponding thresholded RFX map (t > 3.9, p < 5 � 10�2).
above the threshold for several subjects (5, 7, 8, and 10), although
it is in the results of the structural analysis for those subjects. On
the other hand, lowering the threshold would increase the proba-
bility to get false positive results. This shows several things: when
one wants to look at individual results, the single threshold ap-
proach does not stand inter-subject variability; even when looking
at individual results, the knowledge added by the whole group can
help discriminate false and true positive; and it is particularly
interesting for structural analysis not to separate the inter-subject
matching and the detection steps as both cooperate to provide the
final decision.

The same structural analysis performed in a volume-based fash-
ion returned the results presented in Fig. 19. For the (Right–Left
Hand) contrast, the primary sensorimotor activation was detected
as a single structure. For the (Audio–Video) contrast, only the acti-
vation in the Heschl gyrus was detected. This could be the effect of
a non-optimal choice of parameters for the 3D analysis. Neverthe-
less, in both cases, Fig. 19 shows that the delimitation of the de-
tected activations in relation with the cortical surface is poor
compared to the surface-based analysis. Clusters often cover both
sides of a gyrus, or opposite banks of a sulcus. In particular, the
(Right–Left Hand) contrasts confirm the ability of the surface-
based approach to separate the sensory and motor components
of the primary activity for every single subject, and to properly
match each of these two components across subjects. This is gen-
patial variability (d = 19 mm) – (left bottom) results of structural analysis – (right)



Fig. 16. Results for the Right–Left Hand contrast, 10 subjects: (left) individual t maps – (center) thresholded t maps (t > 3.4) – (right) positive labels generated by the structural
analysis. Each color corresponds to a different label. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Rank analysis and significance indices of labels 1, 2 and 3 for the contrast (Right–Left Hand): rank-percentiles (colored bars with corresponding label in brackets) are
superimposed on the corresponding distributions – (left) tl distributions – (right) sl distributions. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 18. Results for the Audio–Video contrast, 10 subjects: (left) individual t maps – (center) thresholded t maps (t > 3.4) – (right) positive labels generated by the structural
analysis. Each color corresponds to a different label. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Volume-based results for both contrasts Right–Left Hand (yellow) and Audio–Video (purple), 10 subjects. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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erally an essential motivation for using surface-based techniques
and is due to the fact that smoothing and structure extraction
are performed on the cortical surface, taking into account its geom-
etry, whereas volume-based analyses consider opposite banks of a



G. Operto et al. / Medical Image Analysis 16 (2012) 976–990 989
sulcus as neighbors. About this specific point, another less con-
trolled factor is the prior projection step, which also divides the
cluster by driving the BOLD signal on both faces of the central sul-
cus. Comparative analyses address this particular question (Tuc-
holka et al., 2009; Anticevic et al., 2008; Desai et al., 2005),
which to date still remains open.
6. Conclusion

We presented here a multi-scale surface-based structural meth-
od for analyzing fMRI data. Our contributions were the surface-
based extension of the volume-based framework presented in
(Coulon et al., 2000), a proper data-driven parameter estimation,
the definition of an inter-subject spatial similarity between objects,
a regionalized optimization scheme, and a non parametric control
of the risk of type I error. Results on synthetic data show good sen-
sitivity and specifity and demonstrate an excellent robustness to
intersubject spatial variability. Results on real data are good and
the advantage of the surface-based approach over the classical vol-
ume-based approach was shown via a comparison with the 3D
structural analysis presented in (Coulon et al., 2000). Beside the
extension of structural analysis to the cortical surface domain,
our method provides a significance assessment and posterior con-
trol of the risk of type I error.

In this paper, the surface-based detection model was defined in
the context of fMRI data analysis. Future research will address the
application of the method to other types of data, e.g. connectivity
(Roca et al., 2010) or cortical curvature maps (Operto et al.,
2010). Dedicated detection models could be implemented for these
specific data, in application to matching and identifying group-
wise resembling objects such as white matter fiber bundles or
sulcal subcomponents. Such analyses might result in pointing out
cortical landmarks that could be reversely introduced in the corti-
cal localization system used in the fMRI activation detection pro-
cess. In conclusion, these future developments take place in an
actually wider perspective of establishing a global structural model
of the cortex (Mangin, 2005), in which different modalities could
possibly be jointly used.
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